
Abstract
This paper discusses the newly developed Decision Support System version 1.0 (DSS v1.0) for air quality
management activities in Delhi,  India. In addition to standard air quality forecasts,  DSS provides the
contribution of Delhi,  its  surrounding districts,  and stubble-burning fires in the neighboring states of
Punjab and Haryana to the PM2.5 load in Delhi. DSS also quantifies the effects of local and neighborhood
emission-source-level interventions on the pollution load in Delhi. The DSS-simulated Air Quality Index
for the post-monsoon and winter seasons of 2021-22 shows high accuracy (up to 80%) and a very low
false alarm ratio (~20%) from Day 1 to Day 5 of the forecasts, especially when the ambient AQI is > 300.
During the post-monsoon season (winter season), emissions from Delhi, the rest of the NCR districts,
biomass-burning activities, and all other remaining regions on average contribute 34.4% (33.4%), 31%
(40.2%), 7.3% (0.1%), and 27.3% (26.4%), respectively, to PM2.5 load in Delhi. During peak pollution
events  (stubble-burning  periods),  however,  the  contribution  from sources  within  Delhi  (farm fires  in
Punjab-Haryana) could reach 65% (69%). According to DSS, a 20% (40%) reduction in anthropogenic
emissions across all NCR districts would result in a 12% (24%) reduction in PM2.5 in Delhi on a seasonal
mean basis. DSS is a critical tool for policymakers because it provides such information daily through a
single simulation with a plethora of emission reduction scenarios.

1. Introduction
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The national capital of India, Delhi, is one of the most populated capitals in the world with an
estimated count of more than 18.7 million (UIDAI, 2021). Immense population density, urbanization, and
industrialization within the city have resulted in many urban issues, including air pollution (Molina and
Molina,  2004;  Chopra,  2016;  Zhang  et  al.,  2022).  The  primary  sources  of  pollutants  are  vehicles,
industries, power plants, waste-burning practices, construction and demolition activities, road dust, etc.
On top of this, the post-monsoonal (October-November) harvesting of the paddy crops and the associated
burning of the paddy residue in the neighboring states of Haryana and Punjab also contribute to the
degradation of air quality in Delhi and the surrounding region (Bikkina et al., 2019; Bray et al., 2019;
Choudhury et al., 2019; Kulkarni et al., 2020; Nair et al., 2020). Besides, the geographical location and
the local meteorological conditions, especially during the winter months, aggravate the pollution levels in
the city (Guttikunda and Gurjar, 2012; Tiwari et al., 2014; Kumar et al., 2020). The pollution in the city is
at its peak during the post-monsoon and the winter seasons, though the summer (April-June) months also
bring severe dust storms and the associated degradation of Delhi’s air quality (Banerjee et al.,  2021;
Chakravarty et al.,  2021;  Parde et  al.,  2022).  The air quality in Delhi  is so poor that  it  occasionally
(especially during the post-monsoon and winter seasons) crosses the national air quality standards by
more than ten times (Kanawade et al., 2020; Jena et al., 2021; Roozitalab et al., 2021). Owing to the ever-
increasing pollution, Delhi has been topping the list of the most polluted national capital cities in the
world (Meteosim, 2019). It has been estimated that the air pollution in Delhi is causing more than 7,000
premature mortalities every year (Guttikunda and Goel,  2013; Ghude et al.,  2016; Saini and Sharma,
2020). The loss of average life expectancy in the city is also estimated to be around two years in Delhi
(Ghude et al., 2016; Guo et al., 2018). 

The primary solution to this problem lies in the reduction of anthropogenic emissions happening
in and around the city. However, permanent mitigation of emissions is a long-term objective due to the
involvement of multiple socio-economic factors (Riahi et al., 2017). A short-term and effective solution to
this problem could be related to creating awareness in the common public about air pollution,  releasing
early  warnings  about  the  air  pollution  episodes  that  are  likely  to  happen,  and  imposing  temporary
emission controls so that the exposure of the common people to acute levels of air pollution  could be
avoided. With this motivation, the Government of India, in the year 2018, directed the Ministry of Earth
Sciences (MoES) to develop an early warning system for air pollution events happening in Delhi. With
this  mandate,  the  Indian Institute  of  Tropical  Meteorology (IITM),  Pune,  and the India  Meteorology
Department (IMD) developed the ‘Air Quality Early Warning System’ (AQEWS) in collaboration with
the National Center for Atmospheric Research (NCAR), USA, in 2018. AQEWS is a dynamical modeling
system that simulates air quality over the entire India with a special focus on Delhi (Ghude et al., 2020;
Kumar et al., 2020; Jena et al., 2021; Sengupta et al., 2022). The forecasting for Delhi is carried out with
a spatial grid spacing of 400 m x 400 m. The system is capable of delivering forecasts for three days and
at a slightly coarser resolution (10 km) for the next ten days. The skill of these forecasts has been found to
be  excellent,  especially  when  the  air  quality  is  beyond  the  ‘very-poor’ category  (Jena  et  al.,  2021;
Sengupta et al., 2022). The forecast has been found to be very useful to policymakers and has helped
them manage the air  quality  in  the  city,  especially  when severe  air  pollution  episodes  are  predicted
(Ghude et al., 2022). 

However, the governing authorities require more specific information about the emission sources
contributing to forthcoming air pollution events occurring in the near future besides the actual forecasts.
They also want to know the solution on how to reduce the impact of an air pollution event forecasted to
affect   the  city.  These requirements were put  forth by the Commission for Air  Quality  Management
(CAQM) in the National Capital  Region and Adjoining Areas, constituted by the honorable Supreme
Court  of  India  in  2021.  While  there  exist  some  recent  source-apportionment-related  studies  on  air
pollution in Delhi (e.g., Gadi et al., 2019; Guo et al., 2019; Shivani et al., 2019; Rai et al., 2020; Tobler et
al., 2020; Yadav et al., 2020; Hama et al., 2021; Lalchandani et al., 2021), there does not exist a  system
that can provide source apportionment information about the city’s pollution either in near-real-time or 72
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h in advance.  Even globally, a very few such systems exist (Denby et al., 2020; Colette et al., 2022)
which give real-time and forecast of region-wise source apportionment of air pollution. Such a capability
is highly essential to suggest possible short-term immediate-relief-based solutions to the pollution menace
happening  in  Delhi,  especially  during  the  post-monsoon  and  winter  seasons.  Responding  to  this
requirement from the CAQM, we have come up with a dynamical modeling system named ‘Decision
Support System’ (DSS) for air quality management in Delhi. The DSS is a new armor in our AQEWS that
has  already  been  providing  neighborhood  scale  forecasts  in  Delhi  (Jena  et  al.,  2021)  and  provides
quantitative information about the 
a) the contribution of emissions from 20 districts of the National Capital Region (NCR) (including Delhi)
to the air pollution (PM2.5 and CO) in Delhi,
b) the contribution of eight different emission sectors within Delhi to the air pollution in the city, 
c) the contribution of emissions from the biomass-burning activities happening in the neighboring states
of Punjab and Haryana to the degradation of air quality in Delhi, and
d) the efficacy of the possible emission source-level interventions on the forecasted air pollution event
occuring in Delhi.
The DSS was operationalized during the post-monsoon and the winter seasons of the year 2021. It has
been found to be very helpful for the governing authorities and the policy-makers. It has been estimated
that the governing authorities avoided a severe air pollution event in Delhi by improving the air quality
index (AQI) in the city by 20-22%, taking guidelines from the AQEWS and DSS (Ghude et al., 2022).
Keeping in mind the usefulness of DSS, the CAQM has recommended that DSS must be an integral part
of the decision-making process for reducing air pollution in the NCR (CAQM, 2022). 

In this paper, we describe DSS by explaining its underlying modeling system, the various input
datasets needed for the simulations, and the chemical data assimilation occurring in the system, in section
2. In the results section (section 3), we first evaluate the performance of DSS in capturing air pollution
load in Delhi during the post-monsoon and the winter seasons of the year 2021-22. This is followed by
the source-apportionment-related results from DSS for both the seasons of interest. We further discuss the
findings from the ‘scenarios of emission reductions’  from DSS. In section 4, we summarize the main
results from the paper. 

2. Details of the Modeling System

2.1 Domain and Meteorological Formulation
The DSS holds  the  fully  coupled regional  chemistry transport  model  ‘Weather  Research and

Forecasting coupled with Chemistry’ (WRF-Chem) in its core. The model domain is centered in Delhi
with a horizontal grid spacing of 10 km x 10 km with 50 vertical levels with eight levels in the first 1 km
from the surface, and the model top is set at 50 hPa. The simulation uses a time step of 1 minute for
temporal integration with radiation calculations done every 12 minutes. The model domain mainly covers
the north Indian region spanning from 620E - 930E and 210N-360N (see supplementary figure 1). We use
the Rapid Radiative Transfer Model for Global Circulation Models (RRTMG) scheme (Mlawer et al.,
1997;  Iacono et  al.,  2000,  2008;  Clough et al.,  2005) to parameterize the short-wave and long-wave
radiative interactions. The choice of the scheme for the parameterization for boundary layer turbulence is
vital  for  the  simulations  of  atmospheric  particulate  pollutants  (Govardhan  et  al.,  2015,  2016,  2019;
Sengupta et al., 2022; and the reference therein). The boundary layer processes in the DSS modeling
framework  are  parameterized  using  the  Mellor-Yamada-Nakanishi-Niino  2.5  (MYNN2.5)  scheme
(Nakanishi and Niino, 2005), which is a turbulent kinetic energy-based scheme that puts a local closure of
level 1.5 on the turbulent fluxes. For the parameterization of the microphysical processes, we use the
WRF single-moment six-class microphysics scheme (Hong and Lim, 2006). The scheme includes six
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prognostic water substances, including cloud water, rain, snow, graupel, water vapor, and cloud ice. We
parameterize the sub-grid scale convective processes using the Grell-Freitas scheme (Grell and Freitas,
2014). A recent study (Debnath et al., 2022) highlights the ability of the Grell-Freitas scheme in capturing
rainfall characteristics over the Indian region. The DSS uses Noah Land Surface Model (Ek et al., 2003;
Niu et al., 2011) to parameterize land-surface processes with the Monin-Obukhov scheme to take into
account the surface layer physics (Jiménez et al., 2012). The DSS utilizes the IITM Global Forecasting
System model (GFS) to generate the meteorological initial  and the boundary conditions for the study
domain  every  3  hours.  This  is  a  global  atmospheric  model  of  IITM,  Pune,  based  on  the  Global
Forecasting System of the National Centers for Environmental Prediction (NCEP), USA. The IITM GFS
runs in an operational forecasting framework at a horizontal grid spacing of 12 km employing ensemble
Karman  filtering  for  assimilating  observational  data  (Mukhopadhyay  et  al.,  2019).  The  IITM  GFS
provides the required conditions of the atmospheric state variables like pressure,  temperature,  winds,
specific humidity, etc., to the model domain. The stationary geographic fields like topographical height,
surface albedo, land-use, leaf area index, etc., are interpolated from the Moderate Resolution Imaging
Spectroradiometer (MODIS) dataset to the model’s grid. 

2.2 Anthropogenic Emissions
We use version 2.2 of the Emission Database for Global  Atmospheric Research Hemispheric

Transport  of Air  Pollutants (EDGAR‐HTAP) (Janssens‐Maenhout et al.,  2015) for the prescription of
anthropogenic emissions of aerosols and trace gases in the DSS. This global emissions inventory has been
constructed  by  combining  multiple  regional  emission  inventories  like  the  Environmental  Protection
Agency (EPA)  for  the  USA,  the  European Monitoring and Evaluation  Programme (EMEP),  and the
Netherlands Organisation for Applied Scientific Research (TNO) for Europe,   EPA and Environment
Canada for Canada, and the Model Intercomparison Study for Asia (MICS-Asia III) for China, India, and
other Asian countries. For the remaining regions, the authors employ the Emissions Database for Global
Atmospheric Research (EDGARv4.3).  The inventory also provides sector-wise emissions for the five
main  sectors,  including  transport,  industries,  power,  residential,  and  agricultural.  The  emissions  are
provided at a spatial resolution of 0.10 in latitude and longitude space. The emissions are available for the
aerosols  and  their  precursor  gases,  including  sulfur-di-oxide  (SO2),  nitrogen  oxides  (NOx),  carbon
monoxide (CO), non-methane volatile organic compounds (NMVOC), ammonia (NH3), BC, OC, PM2.5,
and PM10. 

For  Delhi  and  the  surrounding 19  districts  of  the  National  Capital  Region (NCR),  including
Jhajjar,  Rohtak,  Sonipat,  Panipat,  Bagpat,  Muzzaffarnagar,  Meerut,  Gautam Buddh Nagar,  Faridabad,
Ghaziabad, Alwar, Bharatpur, Bulandshahar, Gurgaon, Rewari, Mahendragarh, Rewari, Jind, and Karnal
we use the anthropogenic emissions inventory prepared by The Energy and Resources Institute (TERI) for
the year 2016. This fine-gridded (4km x 4km) emissions inventory (TERI and ARAI, 2018) provides
anthropogenic  emissions  of  SO2,  NOx,  NMVOC,  CO,  PM10,  and  PM2.5.  The  PM2.5 has  been  further
speciated  in  OC,  BC,  Sulphates,  Ammonium,  Chlorides,  and  Nitrates.  The  inventory  also  provides
emissions on a sectoral basis. The sectors could be broadly classified into eight major sectors, including
transport, residential, industries, waste burning, construction, road dust, energy, and others (which include
the emissions from the sectors like Crematoria, Airports, Restaurants, Non-energy solvent use, and Diesel
Generator sets).  Moreover,  the inventory also includes a monthly variation in emissions from all  the
aforementioned sectors. For this study, we have re-gridded this emission inventory to a horizontal grid
spacing of 0.10 x 0.10 and have subsequently replaced the EDGAR emission fields with this inventory
over the NCR region. 

For the emissions from agricultural burning activities, we use a combination of the Fire Inventory
from NCAR (FINN) database (Wiedinmyer et al., 2011) and the active fire count data from the MODIS
instrument  onboard  the  Aqua  and  Terra  satellites.  The  methodology  followed  for  constructing  this
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database is explained in detail in Jena et al., 2021. In short, we use a fire emissions climatology using the
FINN  database  from  2002-2018  and  the  daily  active  fire-count  data  from  MODIS  to  generate  fire
emissions for our domain from day 1 to day 5 of the forecast. 

2.3 Chemical boundary conditions and the mechanism employed
The boundary conditions for the chemistry variables in DSS are set using the climatological data

from the global chemistry transport model ‘Model for Ozone and Related Tracers version 4’ (MOZART‐
4; Emmons et al., 2010). The climatologies are specifically used as the real-time forecast from MOZART-
4 is not available. In the future, we plan to replace these climatological boundary conditions using global
atmospheric composition forecasts such as the Copernicus Atmosphere Monitoring Service (CAMS) and
the  Whole  Atmosphere  Community  Climate  Model  (WACCM).  Dynamic  chemical  lateral  boundary
conditions are essential for capturing air pollution events related to dust storms originating outside our
domain. The gas-phase chemistry in DSS is simulated using the MOZART-4 chemical mechanism. This
mechanism takes  into account  85 gas-phase species  with 39 photolysis  and  157 gas-phase reactions
(Emmons  et  al.,  2010). The  aerosol  processes  are  simulated  by  employing  the  Goddard  Chemistry
Aerosol Radiation and Transport (GOCART) model that includes five major tropospheric aerosol species,
viz., sulfate, organic carbon (OC), black carbon (BC), dust, and sea salt (Chin et al., 2000, 2002; Ginoux
et al., 2001). While sulfate, BC, and OC are simulated as bulk aerosol species, dust and sea salts are
resolved into five and four size bins, respectively. The carbonaceous aerosols (BC and OC) are assumed
to  be  present  in  both  the  hydrophobic  and  hydrophilic  modes.  The  conversion  of  hydrophobic  to
hydrophilic is assumed to take place with an e-folding lifetime of 2.5 days. The aerosols are assumed to
be deposited down by dry deposition (for all  aerosols)  and wet deposition (for hydrophilic aerosols)
pathways.  While it  is  noted that  the GOCART mechanism does not  take into account  the  secondary
organic aerosols and the nitrate aerosols, we stick to it as it is computationally less expensive and thus
useful in an operational air quality forecasting set-up.

2.3 Chemical Data Assimilation
The DSS improves the initialization of aerosol species and thus  PM2.5 field via assimilation of

satellite observations of aerosol optical depth (AOD) using the three-dimensional variational (3DVAR)
scheme of the community Gridpoint Statistical Interpolation system (version 3.5). The system assimilates
the observations into the model by minimizing the cost function J (x )  (equation 1), which is the sum
of the deviation of the final state of the model from its background state and the observations. The cost
function takes the following form, 

J (x )=
1
2

( x− xb )
T B− 1

( x − xb )  + 
1
2

( H (x ) − y )
T

R− 1
( H ( x ) − y )  …. (1)

Where x  is the state vector which is composed of aerosol chemical composition and meteorological
parameters  needed for  AOD calculation,  xb  is  the  information about  x  available  prior  to  the
assimilation (also known as background information),  B  is the background error covariance (BEC)
matrix,  H  is  the  forward  operator  that  calculates  AOD  from  the  WRF-Chem  aerosol  chemical
composition  following  Liu  et  al.  (2011),  y is  the  AOD  retrieved  by  MODIS,  and  R  is  the
observational error covariance matrix. More details about each of the terms in equation 1 can be found in
Kumar et al. (2020). The assimilation of MODIS AOD (from both TERRA and AQUA satellites) in the
model  is  done at 9 UTC every day in the DSS. In addition to assimilation of satellite data,  we also
assimilate surface measurements of PM2.5 into the model at 9 UTC. The data comes from 43 stations of
the  Central  Pollution  Control  Board  (CPCB)  and  the  Delhi  Pollution  Control  Committee  (DPCC),
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spanned across Delhi. The exact names and the locations of the stations can be found in supplementary
figure 1 of Sengupta et al. (2022). 

2.4 Tagged-tracers in DSS
We  have  added  a  variety  of  passive  tagged-tracers  in  WRF-Chem,  which  assist  us  in

understanding the region- and source-specific contribution to PM2.5 mass concentration over Delhi. The
passive tracer of a regular species is that species introduced in the model which undergoes all physio-
chemical  processes  identical  to  a  regular  chemical  species  (e.g.,  emissions,  transport,  chemical
transformation, deposition, etc.) without providing feedback to the model (Bhardwaj et al., 2021; Kumar
et  al.,  2015).  In  other  words,  the  tracer  species  does  not  take part  in  radiation or  droplet  formation
processes, as its effect in such feedback processes is already taken into account by the parent regular
species. The difference between a regular chemical species and a tracer chemical species is illustrated in
fig.1.

Figure  1:  The  life-cycle  of  a  regular  chemical  species  and  a  tracer  chemical  species  is  illustrated.  The  main
difference lies in the feedback and the chemistry sections. The tracer species does not have feedback on the radiation
processes in the model, and it does not affect the chemistry of regular species in the model. Two such examples of
non-interactive chemistry are given. The CO tracer species gets oxidized by OH - radical, but it does not change the
mass budget of the OH- radical in the model. Similarly, the tracer hydrophobic BC (BC1_tracer) species gets aged
into the tracer hydrophilic BC species (BC2_tracer) while keeping the mass of the regular hydrophilic BC in the
model intact. 

Since PM2.5 is not a prognostic species in the model, we employ tracers for hydrophobic black
carbon (BC1), hydrophilic black carbon (BC2), hydrophobic organic carbon (OC1), hydrophilic organic
carbon (OC2),   non-speciated primary PM2.5 (P25), and carbon monoxide (CO). The GOCART scheme
employed in the WRF-Chem model used in this study calculates PM2.5 as follows, 

PM2.5=BC 1+BC 2+(OC 1+OC2 ) ×1.8+P 25+DUST 1+SEAS 1 +

                (0.286 × DUST 2 )+ (0.942× SEAS 2 )+1.375× SO 4
− 2      …. (2)

Where, 
DUST 1 = Mineral dust aerosol species falling in the first bin with the effective radii equal to 0.73 μm
DUST 2 = Mineral dust aerosol species falling in the second bin with the effective radii equal to 1.4 

μm
SEAS1= Sea-salt aerosol species falling in the first bin with the effective radii equal to 0.3 μm
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SEAS2= Sea-salt aerosol species falling in the second bin with the effective radii equal to 1.0 μm
SO4

-2= Sulfate aerosol species,
In this study, we employ tracers for five of the ten species involved in the calculation of PM 2.5 in the
GOCART scheme (equation 2).  In figure 2,  we examine the contribution of those ten species to the
simulated PM2.5 in the model. 

Figure 2: Speciation of the WRF-Chem simulated near-surface PM2.5 mass concentration over Delhi during January 
2021. Contribution from SEAS1 and SEAS2 to PM2.5 in Delhi is negligible during the study period and thus it is not 
shown in the figure. 

It may be noted that the chosen five species (BC1, BC2, OC1, OC2, and P25) together contribute around
85-90% of the total PM2.5 in the model. Thus, our five tracers would together represent, on an average, 85-
90% of the corresponding PM2.5 mass concentrations. Therefore, practically we can interpret those five
tracers together as a PM2.5 tracer. Adding tracers for SO4

--, DUST1, DUST2, SEAS1, and SEAS2 would
not drastically affect the overall results as their contribution to PM 2.5 over Delhi, specifically during the
winter season, is negligible, especially in the model simulations (however, the fractional contribution of
different species during April-September could be different due to dust storms and monsoon circulation
affecting this region). Moreover, since the forecasting system is operational on a daily basis, one needs to
limit the computational load and thus the total number of species in the model configuration to keep avoid
daily run-time as short as possible. Keeping all these constraints in mind, we chose to put tracers only for
the five selected species. 

2.4.1 Tracers for Anthropogenic PM2.5 in the model
We introduce regional tracers for the total emitted anthropogenic PM2.5 from Delhi and the 19

districts surrounding it. These districts, along with Delhi, form the NCR. The following are the districts
included:  Delhi,  Jhajjar,  Sonipat,  Bagpat,  Ghaziabad,  Gautam  Buddha  Nagar,  Faridabad,  Gurgaon,
Rohtak, Jind, Panipat,  Karnal,  Muzaffarnagar, Meerut,  Bulandshahr, Bharatpur, Alwar, Mahendragarh,
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Rewari, and Bhiwani. In figure 3, we show the locations of these 20 districts. 

Figure 3: The locations of the 20 districts of NCR whose anthropogenic PM2.5 emissions are tagged in DSS. 

In addition to  those 20 districts, we also trace PM2.5 from eight broad source-based categories
exclusively in Delhi. These individual broad categories are a group of several sub-categories put together.
The broad categories and the included sub-categories are listed in table 1. As mentioned in section 2.2, the
emissions inventory provides extensive sub-categorical information for the entire NCR domain. However,
version 1.0 DSS does not trace the PM2.5 emissions from the individual broad categories from the NCR
districts other than Delhi. Even for Delhi, the emissions from the individual sub-categories are not traced.
All these ensure the computational speed and cost for the operational DSS system. Moreover, the tagged
sources fulfill the current requirements of the policymakers with regards to the air quality managment in

8

300

305

310

https://doi.org/10.5194/gmd-2022-300
Preprint. Discussion started: 12 April 2023
c© Author(s) 2023. CC BY 4.0 License.



the city.  

Broad categories Included sub-categories

Transport Diesel vehicles, Gasoline vehicles, and CNG vehicles 

Industries Industries, stone crushers, Brick industry, and Refineries

Construction Construction activities

Road dust Dust emissions from paved roads

Waste burning Refuse burning, Landfill fires, and Incinerators

Energy Power Plants in NCR, Badarpur power plant in Delhi, and Flyash ponds

Residential Domestic-biomass, and other fuels

Others Crematoria, Airport, Restaurant, Non-energy solvent use, and Diesel Generator sets

Table 1: The source-based PM2.5 tracers employed only for Delhi in this version of DSS. It is to be further noted that
we employ tracers for the eight broad source categories (column 1) in Delhi. We do not employ tracers for the
individual sub-categories in this version of DSS.  

2.4.2 Tracers for biomass-burning activities
Along with the anthropogenic emissions of PM2.5,  we also trace the biomass-burning generated

emissions  of  PM2.5.  Similar  to  the  anthropogenic  PM2.5,  we  introduce  tracers  for  biomass-burning
generated BC1, BC2, OC1, OC2, and P25. These tracers hold significant importance in DSS, as the post-
monsoonal harvesting of paddy generates a large amount of stubble which gets burnt and generates a
thick layer of smoke in the upwind regions of Delhi, which eventually travels to Delhi. So, the tracers
representing those burning activities help us identify the contribution of biomass-burning to the PM2.5

load in Delhi and thus are critical for air quality management in Delhi.

2.4.3 Scenario tracers for Anthropogenic PM2.5

Apart from tracing the anthropogenic and the biomass-burning generated PM2.5, DSS offers a very
unique  feature,  which  we term ‘scenario  tracers’.  The  scenario  tracers  are  very  similar  to  the  other
anthropogenic PM2.5 tracers, with the main difference laying in the emission magnitudes of these tracers.
In DSS, a scenario tracer of a regular species has its emission 20 or 40% lesser than the regular species.
Therefore, the scenario tracer represents a scenario in which the emissions of the corresponding regular
species are reduced by 20 or 40%. We have introduced these scenario tracers for all the 20 districts and all
the  eight  broad  source  categories  in  Delhi.  These  scenario  tracers  play  a  vital  role  in  guiding  the
authorities about the possible effects of the source-level interventions. The advantage of scenario tracers
is that it gives an opportunity to generate numerous emission reduction scenarios, which would guide the
policy-makers in finalizing the intervention targets. The use of these tracers for air quality management
purposes will be shown in the results section. 

2.4.4 Chemical data-assimilation for tracers
Another important feature of DSS is chemical data-assimilation applied for the tracer species. In

DSS, for every grid point in the model domain, we identify the ratio by which the regular species like
BC1, BC2, OC1, OC2, and P25 are modified due to the assimilation of satellite as well as ground-based
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data. We multiply all the corresponding tracers species by the same ratios to get them closer to reality.  

2.5 Post-processing of the output
With the aforementioned tracers of different categories, we introduce a total of 470 new tracers in

WRF-Chem for the purpose of DSS. Upon running DSS in an operational forecasting setup, we generate
an enormous amount  of data that  needs to  be processed to  get  meaningful  information.  In  the post-
processing and analysis of the output, we extract the surface level data for all the tracers and the main
regular species. Since our focus of analysis is Delhi, we mask out all other regions from the variable
fields. By doing this, we estimate the contribution of PM2.5 emitted from all the regions of interest to
PM2.5 in Delhi. Moreover, we also get to know the contribution from the sources in Delhi to PM2.5 in
Delhi. The change in PM2.5 due to the emission reduction scenarios is subsequently found. All the analysis
is made publicly available daily at https://ews.tropmet.res.in/dss/. 

2.6 Overall flow of DSS
Figure 4 depicts the operational functioning of DSS. The input data needed for the chemistry part

(white  boxes,  fig.4),  i.e.,  the  anthropogenic  and  biomass-burning  emissions  and  chemical  boundary
conditions, are generated using the utilities like anthro, FINN, and mozbc as explained in sections 2.2 and
2.3. Note that biomass-burning emissions are generated using FINN and the MODIS active fire count
data. The meteorological input component (white boxes with a circle in their left corner, fig.4) consists of
the meteorological boundary forcing data (IITM GFS model output) and the stationary geographical data,
both of which are processed by the WRF Preprocessing System (WPS) to create the model compatible
input and boundary forcing. Both the chemistry and meteorological input data are then processed by the
core  part  of  the  DSS  (gray  boxes,  fig.4)  to  create  the  initial  and  the  boundary  condition  files.
Subsequently, DSS carries out the chemical data assimilation using the CPCB and the satellite data (gray
blocks with a circle in their right corner, fig.4). After this step, the actual WRF-Chem run with 400 tracers
is carried out for the next five days. Upon the completion of the simulation, the outputs are suitably post-
processed to generate two main results (gray boxes with a rectangle in their right corner, fig.4) a) source
apportionment of PM2.5 in Delhi to understand the contribution of the surrounding 19 districts and the
eight sectors in Delhi, and b) the effects of the various emission reduction scenarios on PM 2.5 in Delhi.
The results  are then sent  to the governing and decision-making authorities,  which could take certain
policy-level  decisions in order to manage the air  quality in Delhi.  If  the  decision-making authorities
decide to carry out certain source-level interventions (e.g., Ghude et al., 2022), then those interventions
are then incorporated into the DSS through the feedback section (gray block with a triangle in its right
corner, fig.4). 
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Figure 4: Block diagram for DSS: The white boxes denote input data needed for the chemistry part, the white boxes
with a circle in their left corner stand for the input data related to the meteorological component. The gray blocks
represent the core part of DSS, which is mainly related to the running of the WRF-Chem model. The gray blocks
with a circle in their right corner denote the input data needed for chemical data-assimilation purposes. The gray
boxes with a rectangle in their right corner stand for the standard outputs from the DSS, which are communicated to
the decision-makers (white block with a rectangle in its right corner). The feedback (gray block with a triangle in its
right corner) from the decision-makers and the model’s post-processed output are analyzed, and accordingly, the
emissions of the anthropogenic activities are modified. A more detailed explanation of the working principle of each
block can be found in sections 2 and section 2.6.

3. Results and discussion: 

3.1 Performance evaluation for DSS:
We examine the DSS-simulated near-surface PM2.5  mass concentration against the corresponding

observations carried out  at  the CPCB and DPCC stations in Delhi.  We divide the entire period of 5
months  into the  post-monsoon (October–November)  and winter  (December–February)  seasons as  the
stubble-burning activities are prevalent mainly during the post-monsoonal season, while the winter season
pollution is primarily governed by the local as well as distant anthropogenic emissions and the pollution-
conducive meteorology. Thus, such a division is essential to  help us understand the performance of DSS
in  capturing  the  season-specific  emission  sources  and  the  associated  pollutants’ concentrations.  We
evaluate the performance of DSS for Day 1 to Day 5 of every day’s forecasts. During the post-monsoonal
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period (fig.  5a),  the simulated daily-mean PM2.5 closely matches the measurements for the month of
October 2021. The sharp reduction in the PM2.5 during mid-October (17–20 October) is well captured by
the model for all the lead times (i.e., Day 1 to Day 5). In the first week of November (black cricles, fig.5a
and fig.5c), the model shows a large underestimation with respect to the observations. This period was
mainly associated with the peak of stubble-burning activities (Govardhan et al., 2022) and the Diwali
festival in 2021. Both these events result in emissions of a significant amount of particulate pollutants and
their precursor gases (Singh et al., 2010; Parkhi et al., 2016; Cusworth et al., 2018; Chowdhury et al.,
2019;  Kulkarni  et  al.,  2020;  Saxena  et  al.,  2020).  The  large  uncertainty  associated  with  both  these
emission sources (Vadrevu et al., 2015; Liu et al., 2018; Mukharjee et al., 2020; Kumar et al., 2020)
results  in  the  under-estimated  PM2.5 mass  concentrations  by  DSS.  The  improvements  in  emission
inventories such as the use of Fire Radiative Power (FRP) for estimating and temporally allocating fire
emissions,  incorporation  of  emissions  from fire  crackers  would help  improve  the  estimates. On  the
contrary, the model simulations over-estimate PM2.5 during the following week. Owing to the persistent
severe  air  pollution  days  and  a  forecast  of  a  similar  scenario  from  10 th–13th November  2021,  the
Government of Delhi and the CAQM had issued certain restrictions on the traffic in the city, banned
construction activities, ordered remote schooling and working guidelines, and had banned the entry of the
heavy vehicles into the city (CAQM 2021). As a result, the PM2.5  concentration in the city showed a
reduction in the following week. The simulations did not implement such restrictions in the modeling
framework  and  thus  overestimated  the  PM2.5 concentration  during  this  week.  Towards  the  end  of
November, the model captures the day-to-day variations in the observed PM2.5 but underestimates the
actual magnitudes. Such a behavior could be associated with the coarse grid-spacing of the model (10
km), which limits its ability to simulate higher PM concentrations. For the AQIPM2.5 (fig.5b), the model has
more  tendency  to  generate  AQI  up  to  300  (barring  the  episode  of  10 th–13th November  2021).  The
disagreements with observations in PM2.5 get reflected in the AQI as well. It may well be noted that the
model’s performance does not drastically degrade from Day 1 to Day 5. A detailed analysis of the model’s
ability to capture PM2.5  and the associated AQI has been shown in tables 2–5, which will be discussed
further. 

 For the winter period (fig.5c), DSS shows a better agreement with the observation up to the mid
of December, beyond which the model starts to under-perform in comparison with the observations. The
model simulations are capable of simulating the PM2.5 concentrations as high as 200 μg m-3 however, they
are not able to simulate the values greater than that. Improvements in the emission inventory would be
vital to achieve that.  This issue is likely to be related to the coarser grid spacing in the simulations,
unrealistic  simulations  of  meteorological  parameters  (like  the  planetary  boundary  layer  height,  near-
surface winds, etc.) (Govardhan et al., 2015, 2016), and limitations associated with the chemistry scheme
in the model which may not adequately represent the ambient air pollution chemistry in Delhi (Jena et al.,
2020;  Pawar et  al.,  2022),  and under-representation of the emission sources in the region due to the
unavailability of the real-time dynamic emissions inventory (Sengupta et al., 2022). Nonetheless, DSS
does a better job in the month of February when the ambient PM2.5 concentration is mostly below 200  μg
m-3.  The AQIPM2.5  is also better captured in the winter season (fig. 5d) compared to the post-monsoon
period (fig.5b). The model does capture some events of very poor AQI conditions (300 < AQI ≤ 400).
However, the severe AQI values (AQI > 400) are missed by the model. Overall, the model captures the air
quality conditions up to the very-poor AQI category, but it can not quantitatively capture the severe air
pollution events. However, it is also to be noted that during an observed severe air pollution event (AQI >
400), the simulated AQI lies only one category below (i.e., in the very poor AQI category). Thus, the
model does show signatures of severe air pollution but fails to capture the actual magnitudes. It may also
be noted that whenever the modeled AQI is in or above the very-poor category, the observed AQI almost
always lies in or above the very-poor category, i.e., our system is able to capture extreme events very
well.  This point is illustrated further in tables 4 and 5. The supplementary figure 2 clearly depicts that the
simulated AQI captures othe overall trend of the observed AQI, however the magnitudes of AQI are not
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captured by the model.   

Figure 5: Performance of the DSS in simulating near-surface PM2.5 mass concentration (μg m-3) over Delhi in
comparison  with  the  observations  averaged  over  the  39  observational  locations  across  the  city.  a).  Model  Vs
Observation comparison for the simulated daily mean PM2.5 mass concentration during the post-monsoonal season of
2021. The error bars on the black line indicate the one standard deviation range for the observations. b).  Model Vs
Observation comparison for the daily mean AQI associated with PM2.5 during the post-monsoonal period c). similar
comparison as a, for the winter season. d). similar to b, for the winter period. The black circles mark the days of
Diwali festival during the post-monsoon period of 2021.

We further compute the relevant statistical parameters, namely mean bias (MB), mean error (ME), root
mean square error (RMSE), normalized mean bias (NMB), normalized mean error (NME), fractional bias
(FB),  and fractional  error (FE) for the model-observation comparison of the near-surface PM 2.5 mass
concentration for post-monsoon 2021 (table 2) and winter  2021-22 (table 3).  We report  the statistics
individually for moderate (100 < AQI ≤ 200), poor (200 < AQI ≤  300), and ‘very poor and above’ (AQI >
300)  AQI categories  for  Day 1 to  Day 5 forecasts.  The formulae used for  calculating the statistical
parameters are listed in section 3 of the supplementary material. For the post-monsoon season (table 2),
DSS shows the least MB under poor AQI conditions. Expectedly, ME and RMSE are higher for very poor
and above AQI categories. Moreover, they gradually increase from Day 1 to Day 5 forecasts for all the
scenarios. Nevertheless, the change in ME or RMSE from Day 1 to Day 5 is within 30% of the ME or
RMSE of Day 1 forecasts,  especially for the very poor and above AQI conditions. This signifies the
accuracy of the forecasts over a longer time horizon. The NMB and NME values are limited to ±0.30 and
±0.50, suggesting that DSS depicts an acceptable accuracy for the simulated PM2.5 mass concentrations
(Emery et al., 2017)  for all the AQI categories through Day 1 to Day 5 forecasts. Specifically, NMB
(NME)  values do not cross 0.1 (0.37) for the poor AQI category,  highlighting the accuracy of DSS and
its ability to match the best model in the community (Emery et al., 2017). Like MB and NMB, FB is the
least for the poor AQI conditions. The DSS tends to over-predict (under-predict) the PM2.5 with positive
(negative)  MB,  NMB,  and FB values  during moderate  (poor  and above conditions)  AQI  conditions.
Nevertheless, the system can simulate the observed PM2.5 during the post-monsoonal months with an
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acceptable deviation (Emery et al.,  2017), especially when the observed AQI is in the poor or above
categories.

AQI category Day
MB

(μg m-3)
ME

(μg m-3)
RMSE
(μg m-3)

NMB NME FB FE

Moderate Day 1 11.45 24.48 31.27 0.15 0.32 0.14 0.29

Day 2 11.37 24.08 31.39 0.15 0.31 0.14 0.29

Day 3 13.17 24.65 34.51 0.17 0.32 0.16 0.29

Day 4 20.17 30.92 48.19 0.26 0.40 0.23 0.35

Day 5 22.55 32.19 49.61 0.29 0.41 0.25 0.36

Poor Day 1 -4.94 23.65 30.54 -0.05 0.23 -0.05 0.24

Day 2 -4.29 22.80 30.15 -0.04 0.22 -0.04 0.23

Day 3 -2.25 28.21 48.63 -0.02 0.28 -0.02 0.28

Day 4 9.92 37.69 71.74 0.10 0.37 0.09 0.35

Day 5 13.07 37.73 65.39 0.13 0.37 0.12 0.35

Very poor and above Day 1 -59.97 78.65 102.48 -0.27 0.35 -0.31 0.41

Day 2 -57.84 90.34 122.60 -0.26 0.41 -0.30 0.47

Day 3 -60.74 102.18 135.93 -0.27 0.46 -0.32 0.53

Day 4 -50.93 104.99 140.08 -0.23 0.47 -0.26 0.53

Day 5 -54.43 100.23 132.50 -0.24 0.45 -0.28 0.51

Table 2: The statistical parameters associated with the model evaluation for the simulated near-surface PM2.5 mass
concentration for the post-monsoonal season of 2021. The meaning of the acronyms can be found in section 3.1. The
ideal value for all the statistical parameters is zero. The units of MB, ME, and RMSE are μg m -3, while the other
parameters are unitless.  

For the winter season of 2021-22, the MB values for the moderate category (table 3) are twice
that of the post-monsoonal period, indicating a higher overestimation of the moderate AQI conditions in
the model in the winter period. On the other hand, the MBs for poor and ‘very poor and above’ AQI
scenarios  are  comparable  to  that  in  the  post-monsoonal  months.  The ME,  RMSE,  and NME remain
roughly the same for Day 1 through Day 5 forecasts, which increases the trustworthiness of the forecasts
on short to medium-range time scales. Similar to the post-monsoon season, the NMB and NME values for
the winter season are lesser than ±0.3 and 0.5, respectively, underscoring the ability of the system to
capture the observed PM2.5 mass concentrations very adequately (Emery et al., 2017). Similarly, for the
‘poor’ AQI category, the NMB and NME values are less than ±0.1 and 0.35, respectively, suggesting an
outstanding performance by DSS in this category (Emery et al., 2017). It is to be noted that the NMB
values for the ‘very poor and above’ scenarios are higher compared to the poor scenario. This is likely
because the ‘very poor and above’ category holds a broader range of AQI values (AQI > 300) compared
to the ‘poor’ AQI bracket (200 < AQI ≤  300), which results in the higher NMB in the former compared to
the  latter.  Similar  to  the  post-monsoonal  period,  the  system  has  a  tendency  to  overestimate
(underestimate) the PM2.5 under moderate (very poor and above) AQI conditions, which is reflected in the
positive (negative) MB, NMB, and FB values. Overall, the performance of the DSS is improved in the
winter  season compared to the post-monsoonal  season (indicated by the lower values of the relevant
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statistical parameters in table 2 and table 3). 

AQI category  Day
MB 

(μg m-3)
ME

(μg m-3)
RMSE

(μg m-3)
NMB NME FB FE

Moderate Day 1 22.25 32.66 44.25 0.29 0.43 0.26 0.37

Day 2 20.43 32.56 42.38 0.27 0.43 0.24 0.38

Day 3 25.78 36.70 49.92 0.34 0.48 0.29 0.41

Day 4 24.29 35.50 47.93 0.32 0.47 0.28 0.40

Day 5 22.31 34.92 44.73 0.29 0.46 0.26 0.40

Poor Day 1 4.50 27.20 34.50 0.04 0.26 0.04 0.26

Day 2 6.75 29.95 40.25 0.06 0.29 0.06 0.28

Day 3 7.40 33.96 44.84 0.07 0.33 0.07 0.32

Day 4 3.75 33.58 42.16 0.04 0.32 0.04 0.32

Day 5 4.84 34.70 44.99 0.05 0.33 0.05 0.33

Very poor and above Day 1 -58.66 75.54 97.63 -0.28 0.36 -0.33 0.42

Day 2 -60.70 76.96 101.21 -0.29 0.37 -0.34 0.43

Day 3 -65.98 83.00 107.70 -0.32 0.40 -0.38 0.47

Day 4 -67.49 80.42 106.76 -0.32 0.39 -0.39 0.46

Day 5 -65.21 80.20 106.45 -0.31 0.39 -0.37 0.46

Table 3: Similar to table 2 but for the winter period of 2021-22.

We  have  also  examined  the  ability  of  DSS to  capture  the  AQI  associated  with  PM2.5 mass
concentration  values  in  comparison  with  the  corresponding  observations.  To  assess  the  model’s
performance, we have computed the statistical parameters, namely Accuracy, False Alarm Ratio (FAR),
Probability  of  Detection  (POD),  Critical  Success  Index  (CSI),  Success  Ratio  (SR),  and  Bias.  These
parameters are calculated for the individual AQI categories using the contingency table and the formulae
presented in section 4 of the supplementary material. From table 4, it can be seen that, during the post-
monsoon season,  the Accuracy is generally high for all the AQI scenarios. For the poor and moderate
categories, this could be an artifact of the correct forecasts of the non-events, while for the ‘very poor and
above’ AQI category, this behavior could be attributed to the correct forecasts for both the events and the
non-events  (fig.5b).  Please  note  that  here  the  ‘event’  (non-event)  refers  to  the  occurrence  (non-
occurrence) of the observed AQI in the desired AQI range. The FAR is higher for moderate and poor
categories suggesting false forecasts of the non-events; this could be partly related to the fact that the
model-simulated AQI does not reach the very poor and above categories as frequently as the observations
but remains in the poor category on more instances as compared to the observations. This results in a
higher FAR for the poor category. On the other hand, the FAR for the ‘very poor and above’ AQI category
is  drastically  low,  which enhances  the  confidence in  the  simulated AQI in the  very poor  and above
category. The POD is low for the poor and moderate, while it is relatively higher for the ‘very poor and
above’ category.  The  CSI  values,  which  indicate  the  overall  success  of  the  forecasting  system,  are
relatively high for the ‘very poor and above’ category and lower for the poor category. Thus, during the
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post-monsoon  season,  DSS  shows  trustworthy  performance  for  the  AQI  ranging  beyond  very-poor
conditions. 

AQI category Day Accuracy (%) FAR (%) POD (%) CSI (%)

Moderate Day 1 79.08 58.11 43.26 27.03

Day 2 81.83 50.74 46.51 31.45

Day 3 81.75 50.97 46.98 31.56

Day 4 80.00 56.98 35.81 24.29

Day 5 79.92 58.44 29.77 20.98

Poor Day 1 71.58 83.89 59.79 14.54

Day 2 68.92 83.17 72.16 15.80

Day 3 61.17 87.58 62.89 11.58

Day 4 62.50 92.53 31.96 6.44

Day 5 59.67 95.10 21.65 4.16

Very Poor and above Day 1 80.42 0.35 71.09 70.92

Day 2 77.92 0.00 67.12 67.12

Day 3 70.83 0.00 56.58 56.58

Day 4 71.42 9.17 63.90 60.02

Day 5 68.08 13.34 62.03 56.63

Table 4: The statistical parameters associated with the evaluation of the simulated AQI associated with PM2.5 mass
concentration for the post-monsoonal season of 2021. The meaning of the acronyms can be found in section 3.1, and
details about the formulae are mentioned in section 4 of the supplementary material. The ideal values for Accuracy,
FAR, POD and CSI are 100.0, 0.0, 100.0, and 100.0, respectively. 

For the winter  season (table  5),  the  model's  behavior roughly remains  the same as  the post-
monsoon, with the only difference occurring in the poor AQI category. The FAR for the ‘poor’ category
drops with a consequent increase in CSI. Nevertheless, the model still behaves the best when AQI goes to
‘very poor’ and above, with FAR limiting only to as high as 21% and the POD and CSI crossing 60%.
Thus, the analysis assures that the model-simulated AQI is trustworthy for values beyond 300. 

The Graded Response Action Plan (GRAP) includes a variety of predefined temporary emission
control measures for all the PM2.5 and PM10 AQI categories. Expectedly, the GRAP regulations become
more stringent when the AQI goes beyond very poor and above (CAQM, 2022). Starting from October
2022, the GRAP in Delhi will be made operational based on the AQI forecast released by the air quality
forecasting  models  (CAQM, 2022).  The  low FAR for  DSS in  the  ‘very  poor  and above’ categories
certainly increases the confidence about the simulated AQI in this range and thus permits us to use the
model data to implement GRAP in the city. Additionally, the FAR values for the ‘very poor and above’
categories remain within 20% for day one to day five forecasts for both seasons. This further assures the
use of short to medium-range DSS forecasts for implementation of GRAP when AQI goes beyond very-
poor conditions.
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AQI category Day Accuracy (%) FAR (%) POD (%) CSI (%)

Moderate Day 1 82.35 65.39 53.13 26.51

Day 2 83.29 62.29 60.55 30.27

Day 3 84.46 62.18 46.09 26.22

Day 4 84.13 68.78 26.95 16.91

Day 5 84.41 65.98 32.03 19.76

Poor Day 1 69.34 63.43 46.22 25.65

Day 2 70.41 60.41 55.62 30.09

Day 3 60.86 70.01 53.17 23.72

Day 4 57.49 72.17 53.78 22.46

Day 5 59.55 70.23 56.44 24.21

Very Poor and above Day 1 76.03 15.47 73.44 64.74

Day 2 75.66 12.52 69.30 63.04

Day 3 68.49 17.40 60.08 53.33

Day 4 64.98 20.96 56.56 49.18

Day 5 66.01 19.36 56.95 50.10

Table 5: Similar to table 4 but for the winter period of 2021-22.

To shed more light on the model’s performance in the simulation of AQI, we have drawn the
performance diagrams (figure 6) for the model simulated AQI in different categories for both seasons,
using the SR, Bias, CSI, and POD. The performance diagram (Roebber, 2009; Sengupta et al., 2022)
provides  a  quick  visualization  of  the  model’s  performance  for  multiple  statistical  parameters.  The
category-wise  statistical  parameters  have  been  plotted  for  Day  1  through  Day  5  forecasts  for  post-
monsoon (fig.6a) and winter (fig. 6b) seasons. In the performance diagram, an ideal model simulation
would fall in the upper right corner. It is to be noted that the ideal value of Bias is 1, which indicates that
the  POD and  SR  match  each  other  (Roebber,  2009;  Sengupta  et  al.,  2022).  This  signifies  that  the
probability of getting a false forecast for a non-event from the model is equal to that of a false forecast for
an event from the same model. For the post-monsoonal period, the forecasts for very poor and above AQI
fall relatively closer to the upper right corner, with POD values going up to 70% and SR reaching 100%.
The model is highly (moderately) skillful in capturing the ‘very poor and above’ (moderate) air quality
conditions. It depicts lower SR values (and thus higher FAR and Bias) for the poor AQI conditions; this is
likely  to  be  related  to  the  underestimation  of  the  very-poor  AQI  by  the  model  resulting  in  higher
occurrences  of  the  simulated  AQI  in  the  poor  category  (in  comparison  with  the  observations),  thus
resulting in lower SR values for poor conditions, as noted in table 4.

For the winter season (fig. 6b), the model's performance shows large improvements, especially
for poor AQI conditions (as noted in table 5). The POD and SR for ‘very poor and above’ conditions cross
the 80% mark, indicating an excellent performance for Day 1 through Day 5 forecasts. Even for the poor
category,  the  model  shows  large  improvements  with  greater  SR  (~40%)  and  POD  (~60%)  values
compared to the post-monsoon. Interestingly, as noted in tables 4 and 5, for both seasons, the model
shows the highest performance ratings for the very poor and above AQI conditions. The implications of
this have already been discussed in the analysis of tables 4 and 5.  It is to be noted that, throughout section
3.1, we do not evaluate the model’s performance for good (AQI ≤ 50) and satisfactory (50 ≤ AQI < 100)
categories as the observed AQI hardly ever falls in these categories. Nonetheless, the ability of the model
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to capture AQI in very poor and above conditions is encouraging as the air quality forecasting capabilities
are mainly needed for such air quality conditions and not when the air quality is in a good or satisfactory
category. 

Figure 6. Performance diagram for model simulations of Air Quality Index for a) post-monsoon season 2021 and b) 
winter season 2021-22. The details about the calculation of the statistical parameters like Bias, and CSI can be found
in section 4 of the supplementary material. 

3.2 Region and sector-wise source apportionment of PM2.5 in Delhi:
One of the main features of DSS is its ability to quantify the contribution of the different NCR

districts and emissions sources to the PM2.5 pollution load in Delhi. The tagged tracers employed in the
system  help  achieve  this  objective.  To  facilitate  ease  in  visualization  and  understanding  of  these
contributions we divide them in six broad categories as follows a) Delhi transport sector, b) All other
emission sectors within Delhi, c) Bordering districts (which include Jhajjar, Faridabad, Gurgaon, Gautam
Buddha Nagar,  Rohtak, Sonipat,  Bagpat and Ghaziabad districts  of  NCR),  d)  Other districts  of NCR
(which include the remaining districts of NCR, the details of which can be found from figure 3) e) stubble
burning , and f). all other remaining regions. In figure 7, we show the daily mean and seasonal mean
contribution of those six broad source-categories to the simulated PM2.5 in Delhi for the post-monsoon
and winter seasons of the year 2021. For the post-monsoonal period (fig. 7a-b), 34% contribution to PM 2.5

in  Delhi  comes  from Delhi’s  own sources,  including  the  transport,  peripheral  industries,  residential,
construction, waste burning, road dust, and energy sectors. The next major contribution comes from the
bordering districts and the stubble-burning activities, with their seasonal mean contributions going up to
25% and 8% respectively.  The  stubble/biomass-burning  activities  impact  the  pollution load  in  Delhi
roughly  for  a  month  i.e.,  from  mid-October  to  mid-November.  The  daily  mean  biomass-burning
contribution goes as high as 37% in the first week of November when the biomass-burning activities in
Punjab and Haryana are recorded to be at their peak (Govardhan et al., 2022). It is important to note that
around 26% of Delhi’s PM2.5  comes from the other regions (excluding the biomass burning activities),
which are not included in the 20 districts considered in this analysis. Within Delhi, the major contribution
comes from the transport sector with a seasonal mean of 17%. 
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Figure 7:  Source apportionment of PM2.5 mass concentration in Delhi for a) post-monsoon 2021 on a daily mean
basis b) post-monsoon 2021 on a seasonal mean basis c) winter 2021-22 on a daily mean basis, and d) winter 2022
on  a  seasonal  mean  basis.  The  numbers  written  on  the  pie  charts  indicate  the  percentage  contribution  of  the
particular source to PM2.5 in Delhi.   

During the winter season (fig. 7c-d), Delhi’s own contribution roughly remains the same (34%).
This  estimate  is  comparable  to  a  previous  study carried  out  by TERI  and ARAI,  which  reports  the
contribution to be around 36% (TERI and ARAI, 2018).  The contribution from the neighboring districts
increases to 20% from 17% in the post-monsoon season. Within Delhi, the transport sector contributes the
highest  (14%).  The  industries  in  and  around  Delhi  also  contribute  around  9.5%.  The  increased
contribution of the industries could be associated with the emissions coming from the brick kilns located
on the periphery of the city. The kilns are not operational during the post-monsoon season, but  they
become operational during the winter season (TERI, 2018). The contribution from the ‘other’ regions
remains roughly the same (26%) as in the post-monsoon season. Overall, on the seasonal mean basis, for
the post-monsoonal season (winter season), contributions from the different regions could be listed as
follows: Delhi: 34.4% (33.4%), NCR districts: 33% (40.2%), Biomass burning 7.3% (~0.1%) and the
other regions: 27.3% (26.4%). Those bordering districts of Delhi contribute to around 25% in the post-
monsoon season and 32% in the winter season. Thus a majority of the PM2.5 in Delhi comes from its
immediate neighbors. Thus, Delhi’s air pollution load does not look like a local issue, but it seems to be a
regional  issue,  and  cooperation  among  various  stakeholders  is  required  to  address  this  problem
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effectively. 

3.3 Impacts of emission reductions: 
The most unique feature of DSS is the availability of ‘scenario’ tracers. This feature estimates the

impacts  of  reduction in  the  individual  source/district-wise  emissions on the PM2.5 load in  Delhi.  We
include 50 such PM2.5 tracers, which carry the reduced emissions from 25 different sources, including 19
surrounding districts  and the six individual  emission sectors  (namely transport,  peripheral  industries,
waste burning, construction, road dust, and energy) in Delhi. We form two sets of scenario tracers with a)
emissions reduced by 20% and b) emissions reduced by 40%. Using the scenario tracers one can compute
the changes in the PM2.5 mass concentration in Delhi upon a 20 or 40% reduction in one or a combination
of the 25 emissions sources (19 surrounding districts and six sectors in Delhi). The reduction in PM2.5

mass concentration in Delhi  upon a 20% and 40% reduction in  all  those emissions during the post-
monsoon and the winter seasons of 2021 have been plotted in figure 8. Similar to figure 7, we have
divided the sources in four different categories i.e. the categories a to d from section 3.2. 

During the post-monsoon season, a 20% reduction in all the sources (fig.8a) results in a seasonal
mean reduction of ~12.1%  in PM2.5 Delhi. While around 5.7% of it would result from a 20% reduction in
the sources within Delhi, the remaining 6.4% would come from the reduction in the neighboring districts
of NCR. Similarly, a 40% reduction in all the concerned emissions sources (fig.8c) would result in an
overall  24.3% reduction in  the  seasonal  mean PM2.5 load in Delhi,  of  which 11.5% comes from the
reduction in the sources within Delhi, while the remaining 12.8% would result from 40% reduction in the
emissions from other districts of NCR.  It is to be noted that the change in PM 2.5 in Delhi roughly scales
linearly from a 20% reduction to a 40% reduction. During the period when biomass burning activities are
the highest (on 6th and 7th November 2021), the 20% (40%) reduction in other sources of PM 2.5 reduces
the PM2.5 in Delhi only by 7-8% (14-16%). Thus, it is to be noted that when such activities are at their
peak, any control measure on the anthropogenic emissions of PM2.5 will not have a drastic effect on the air
quality in Delhi.   

For the winter season, the 20% reduction scenarios result in a mean reduction of 13.8% in PM2.5

in Delhi, of which 5.8% comes from Delhi’s sources while the remaining 8% comes from the neighboring
districts of NCR. Similarly, the 40% reduction scenarios result in a mean reduction of 27.75% in PM 2.5 in
Delhi. Out of this, 11.5% comes from Delhi’s own sources, while the remaining 16.25% comes from the
other  districts  of  NCR.  In  the  winter  season,  the  improvements  in  Delhi’s  PM2.5  by  controlling  the
emissions  in  the  neighboring  district  of  Jhajjar  (see  supplementary  figure  3)  are  comparable  to  the
improvements achieved by controlling the transport sector emissions within Delhi. However, in the post-
monsoon season, the emission reductions in Jhajjar have a relatively lesser impact. This signifies the need
for change in the emission reduction strategy from season to season for air quality management in Delhi.
The same policy for both seasons may not give the same amount of reductions. 

On a daily mean basis, the reduction scenarios can reduce the PM2.5  in Delhi by as high as 16%
(for 20% reduction scenarios) and 32% (for 40% reduction scenarios) in either of the seasons. These
control measures, when operated during severe air pollution events like the ones noticed during the last
week of December 2021, the first week of January 2022, and the third week of January 2022, would result
in  a  substantial  reduction in  Delhi’s  PM2.5.  The measurements  of  daily  mean PM2.5  suggests  that  the
maximum values of PM2.5 during those events were 334 μg m-3, 310 μg m-3, and 362 μg m-3, respectively.
The 40% reduction scenario for all  the sources would result  in ~25-30% reduction in PM 2.5 in Delhi
during those days, which would roughly result in a reduction of 80-110 μg m -3 in PM2.5 in Delhi on those
days. This would result in the modulation of air quality from the ‘severe’ category to the ‘very poor’
category. This is a satisfactory gain considering the already elevated air pollution level in the city. Thus,
such information about the possible emission-reduction scenario would be critical from the air quality
management perspective. Moreover, since the performance of the DSS in capturing the broad category of
air quality scenario does not drastically drop from Day 1 to Day 5 (figure 5, table 2–5), such information
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would certainly help the decision-makers in managing the air quality in the city in a timely manner.

Figure 8: Fractional reduction in the PM2.5 load in Delhi due to a). a 20% reduction in all the considered
emission sources for the post-monsoon season of 2021, b) same as a) but for the winter season, c). same as a) but
with a 40% reduction scenario, and d) same as c) but for the winter season.

A practical  example  of  the  use  of  DSS  for  air  quality  management  purposes  in  Delhi  was
witnessed in the month of November 2021. Based on the air quality forecast, source attribution of PM2.5 in
Delhi,  and the associated scenario analysis,  the  CAQM and the Government  of  Delhi  issued certain
restrictions  on trans-boundary and internal  vehicular  traffic  and construction activities  in  Delhi.  This
resulted in an 18-20% reduction in PM2.5 and a 20-22% reduction in the AQI of Delhi (Ghude et al.,
2022). This clearly signifies the role DSS played (and would play in the future) in the short-term air
quality management in Delhi. This is one of the rare air quality forecasting systems in the world that offer
a utility like the ‘scenarios’ tool that would inform the decision-makers about the efficacy of their source-
level interventions on the air pollution occurring in a city. With the help of the ‘scenario’ tool, users can
create their own strategy for emission reduction to get an idea of how to possibly avoid the forecasted
severe air pollution event for the city. We certainly note that DSS currently provides all such information
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only for the city of Delhi; however, there is an equal demand for such information from the neighboring
towns of NCR like Ghaziabad, Faridabad, Noida, Gurgaon, etc, as outlined in the recently formed air
pollution control policy for the NCR (CAQM, 2022). In the next version of DSS, we plan to cater to this
requirement and explore machine learning-based approaches to maximize computational efficiency. In the
current configuration, the DSS runs with a relatively coarser resolution (10 km x 10 km). This is mainly
due to the computational cost it carries associated with a large number of three-dimensional tagged tracers
and the upper bound on the daily run time due to the daily forecasting requirements. Nevertheless, in the
next version, we are planning to increase the spatial resolution of the simulations. Another artifact of the
coarse spatial resolution is the limited accuracy of the forecasts with respect to the observed PM2.5 values.
However, in the case of DSS, one is more interested in the relative contributions of the sources to the
PM2.5 load  and  the  relative  reduction  in  the  PM2.5  upon  employing  the  various  emission  reduction
scenarios. This focus on the relative contribution comes from the basic assumption that the contributions
would  roughly  remain  similar  even when the  DSS-simulated  PM2.5 matches  the  observations  with  a
greater agreement. 

Another  reason  for  the  underestimated  PM2.5 in  DSS  is  the  static  nature  of  the  emissions
inventory.  However,  the  anthropogenic  emission sources  vary in  a dynamic manner.  Any forecasting
model which does not take those dynamic changes into account is expected to miss the sudden rise in
PM2.5 associated with the dynamic changes in the emissions. Even though the chemical data assimilation
operational in DSS bridges this gap at the start of the model run, it fails to capture the sudden rise in
emissions happening during the other hours. The incursion of the dynamic emissions inventory, though,
remains a challenge; there are a few recent efforts done on that front (Liu et al., 2018; Zhang et al.,2019;
Meng et al., 2020; Li et al., 2021). Using the daily Visible Infrared Imaging Radiometer Suite (VIIRS)
thermal  anomaly  product,  Zhang  et  al.  (2019)  and  Li  et  al.  (2021)  have  shown  the  capabilities  of
generating dynamic emissions for industrial sources. Meng et al. (2020) have utilized web-based traffic
maps and real-time traffic data to generate a dynamic inventory of vehicular traffic emissions in China.
Such techniques could be used in future versions of DSS to get better estimates of real-time traffic. The
emissions inventory used in this version of DSS does not take into account emissions associated with
space heating. These emissions would be non-negligible, especially in the winter months. Thus, in the
next version, we would explore the possibility of including such sources of emissions. 

The biomass-burning emissions, on the other hand, have even more uncertainties. The limitations
associated  with  satellite  detection  of  stubble-burning  fires  due  to  the  cloud cover  (Liu  et  al.,  2020;
Cusworth et al., 2018), the limited number of passes in a day (Liu et al., 2020; Kumar et al., 2021),
smarter burning practices (Kumar et al., 2021), unrealistic estimation of emissions from the fires (Kumar
et al., 2021), etc., lead to multiple orders of uncertainty in the emission estimates from fires. We have seen
that biomass-burning fires contribute as high as 37% to the daily mean PM2.5 load in Delhi during the peak
burning periods;  however, this number certainly represents a lower bound due to the aforementioned
uncertainties. Therefore, more work is needed to constrain the estimates of the emissions from biomass-
burning activities in the region. Additionally, stronger policies are needed to reduce the amount of stubble
that is being burnt,  especially in the post-monsoonal season in this region. In DSS, we carry out the
chemical data assimilation only once in the forecasting cycle in this setup; in the future, we can carry out
assimilation at least twice to correct the model concentrations even at night times. This will  help the
model capture higher PM concentrations which usually occur during the night hours due to shallower
mixed layers. In the next version of DSS, we are planning to incorporate a few new scenario tracers, like
the ‘odd-even’ scenario for vehicular traffic, which allows only those vehicles to ply on the road with an
odd (even) number as the last digit of their registration number on odd (even) dates. This policy has been
used by the Government of Delhi in the past to control vehicular movement and the associated emissions
(Sud and Iyengar, 2016; Kumar et al., 2017; Choudhary et al., 2018; Tiwari et al., 2018). Thus, while the
first version of DSS has proven to be beneficial for the policy-makers, we have identified its limitations
as well, and we will attempt to overcome those limitations in the next version. 
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4. Conclusions: 
In order to assist the governing authorities in managing the air quality in the capital of India,

Delhi, we have designed an operational air quality forecasting framework with certain unique features
that  help  the  decision-makers  to  form policies  for  managing  the  air  quality  in  the  city.  This  newly
developed Decision Support System (DSS) for air quality management in Delhi, besides forecasting the
air  quality  in  the  north  Indian  region  for  the  next  five  days,  quantifies  the  contributions  of  the  19
surrounding districts, individual emission sectors in Delhi, and the biomass burning activities (occurring
primarily in the northwestern states of India in the post-monsoon season) to the PM 2.5 mass concentration
in Delhi. The system also quantifies the effects of emission source-level interventions on the forecasted
air pollution in the city. Thus, with the help of DSS, the policy-makers not only get a warning about future
severe air pollution events but also understand the possible causes for the event and get a quantitative idea
about the efficacy of the source-level interventions on the forecasted event. In this paper, we evaluated the
performance of DSS in simulating near-surface PM2.5 mass concentration and the associated air quality
index in  Delhi  for  the  post-monsoon and winter  seasons  of  2021-22.  We also  carry  out  the  source
apportionment of PM2.5 in Delhi during the two seasons. The key results are listed as follows:
1. The performance of the model in simulating the air pollution in Delhi noticeably improves from post-
monsoon to the winter season, owing primarily to the uncertainty in the emission estimates from the
biomass burning activities and the anthropogenic activities during the Diwali festival, which occur in the
post-monsoon season. 
2. For both seasons (post-monsoon and winter), the DSS satisfactorily captures the observed air quality
index (AQI) in Delhi, especially when the AQI crosses a very poor or above that mark. Under such a
situation, DSS depicts a very low false alarm ratio (~20%), which increases the trustworthiness of the
simulated AQI. For all the AQI categories (moderate, poor, and very poor and above), DSS shows a very
high accuracy (~80%). However, the critical success index for the simulated AQI is seen to be the highest
for the ‘very-poor and above’ category, i.e., extreme pollution events are captured very well. 
3. The performance of the model does not deviate largely from Day 1 to Day 5 forecasts, which highlights
the applicability of the DSS forecasts in short to medium-range air quality management activities. 
4. The region-wise source apportionment of PM2.5 mass concentration in Delhi carried out with the help of
DSS suggests that during the post-monsoon season (winter season), on average, Delhi itself contributes
34.4% (33.4%) to its PM2.5 load. The NCR districts contribute 31% (40.2%). The emissions from the
biomass burning activities on the seasonal  mean basis contribute 7.3% (~0.1%) of the PM2.5 mass in
Delhi, while the other regions contribute around 27.3% (26.4%). The districts of NCR which share their
border with Delhi (namely Jhajjar, Gurgaon, Faridabad, Ghaziabad, Gautam Buddha Nagar, Bagpat, and
Sonipat) contribute about 22% in the post-monsoon season and 30% in the winter season. 
5. The ‘scenario’ tracers employed for PM2.5 in DSS suggest that a 20% reduction in all the tagged sources
in Delhi and the NCR districts results in a seasonal mean reduction of ~12 - 14 %  in PM 2.5 mass in Delhi.
While around 5.8% of that comes from controlling Delhi’s own emission sources, the remaining comes
from control measures applied in the NCR districts. As expected, during the peak biomass burning events,
such control measures on the anthropogenic emissions yield a relatively lesser gain. 
6. The reduction in Delhi’s PM2.5 load scales roughly linearly with the magnitude of emission reductions,
i.e., the reduction in Delhi’s PM2.5 for a 40% control on the anthropogenic emission sources within Delhi
and the NCR districts is roughly twice that of the reductions associated with a 20% cut on emissions.  

In short, DSS is a highly effective tool for decision-makers and the masses.
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